Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Exp Gerontol ; 189: 112403, 2024 May.
Article in English | MEDLINE | ID: mdl-38490285

ABSTRACT

Walking performance and cognitive function demonstrate strong associations in older adults, with both declining with advancing age. Walking requires the use of cognitive resources, particularly in complex environments like stepping over obstacles. A commonly implemented approach for measuring the cognitive control of walking is a dual-task walking assessment, in which walking is combined with a second task. However, dual-task assessments have shortcomings, including issues with scaling the task difficulty and controlling for task prioritization. Here we present a new assessment designed to be less susceptible to these shortcomings while still challenging cognitive control of walking: the Obstructed Vision Obstacle (OBVIO) task. During the task, participants hold a lightweight tray at waist level obstructing their view of upcoming foam blocks, which are intermittently spaced along a 10 m walkway. This forces the participants to use cognitive resources (e.g., attention and working memory) to remember the exact placement of upcoming obstacles to facilitate successful crossing. The results demonstrate that adding the obstructed vision board significantly slowed walking speed by an average of 0.26 m/s and increased the number of obstacle strikes by 8-fold in healthy older adults (n = 74). Additionally, OBVIO walking performance (a score based on both speed and number of obstacle strikes) significantly correlated with computer-based assessments of visuospatial working memory, attention, and verbal working memory. These results provide initial support that the OBVIO task is a feasible walking test that demands cognitive resources. This study lays the groundwork for using the OBVIO task in future assessment and intervention studies.


Subject(s)
Gait , Walking , Humans , Aged , Cognition , Walking Speed , Attention , Task Performance and Analysis
2.
Neuromodulation ; 26(4): 829-839, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35410769

ABSTRACT

OBJECTIVES: Complex walking in older adults can be improved with task practice and might be further enhanced by pairing transcranial direct current stimulation (tDCS) to the dorsolateral prefrontal cortex. We tested the hypothesis that a single session of practice of a complex obstacle negotiation task paired with active tDCS in older adults would produce greater within-session improvements in walking performance and retention of gains, compared to sham tDCS and no tDCS conditions. MATERIALS AND METHODS: A total of 50 older adults (mean age = 74.46 years ± 6.49) with self-reported walking difficulty were randomized to receive either active tDCS (active-tDCS group) or sham tDCS (sham-tDCS group) bilaterally to the dorsolateral prefrontal cortex or no tDCS (no-tDCS group). Each group performed ten practice trials of an obstacle negotiation task at their fastest safe speed. Retention of gains in walking performance was assessed with three trials conducted one week later. Within-session effects of practice and between-session retention effects on obstacle negotiation speed were examined. RESULTS: At the practice session, all three groups exhibited significant within-session gains in walking speed (p ≤ 0.005). However, the gains were significantly greater in the sham-tDCS group than in the active-tDCS and no-tDCS groups (p ≤ 0.03) and were comparable between the active-tDCS and no-tDCS groups (p = 0.89). At one-week follow-up, the active-tDCS group exhibited significant between-session retention of gains and continued "offline" improvement in walking speed (p = 0.005). The active-tDCS group showed significantly greater retention of gains than the no-tDCS (p = 0.02) but not the sham-tDCS group (p = 0.24). CONCLUSIONS: Pairing prefrontal active tDCS with a single session of obstacle negotiation practice may enhance one-week retention of gains in walking performance compared to no tDCS. However, the evidence is insufficient to suggest a benefit of active tDCS over sham tDCS for enhancing the gains in walking performance. Additional studies with a multisession intervention design and larger sample size are needed to further investigate these findings. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT03122236.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Aged , Negotiating , Walking , Prefrontal Cortex/physiology , Double-Blind Method
3.
Exp Gerontol ; 165: 111845, 2022 08.
Article in English | MEDLINE | ID: mdl-35644417

ABSTRACT

BACKGROUND: Over-activation of prefrontal cortex during walking has been reported in older adults versus young adults. Heighted activity in prefrontal cortex suggests a shift toward an executive control strategy to control walking. A potential contributing factor is degraded functioning of pattern-generating locomotor circuits in the central nervous system that are important to walking coordination. Somatosensory information is a crucial input to these circuits, so age-related impairment of somatosensation would be expected to compromise the neural control of walking. The present study tested the hypothesis that poorer somatosensation in the feet of older adults will be associated with greater recruitment of the prefrontal cortex during walking. This study also examines the extent to which somatosensory function and prefrontal activity are associated with performance on walking and balance assessments. METHODS: Forty seven older adults (age 74.6 ± 6.8 years; 32 female) participated in walking assessments (typical walking and obstacle negotiation) and Berg Balance Test. During walking, prefrontal activity was measured with functional near infrared spectroscopy (fNIRS). Participants also underwent somatosensory testing with Semmes-Weinstein monofilaments. RESULTS: The primary findings is that worse somatosensory monofilament level was associated with greater prefrontal cortical activity during typical walking (r = 0.38, p = 0.008) and obstacle negotiation (r = 0.40, p = 0.006). For the obstacle negotiation task, greater prefrontal activity was associated with faster walking speed (p = 0.004). Poorer somatosensation was associated with slower typical walking speed (p = 0.07) and obstacles walking speed (p < 0.001), as well as poorer balance scores (p = 0.03). CONCLUSIONS: The study findings are consistent with a compensation strategy of recruiting prefrontal/executive control resources to overcome loss of somatosensory input to the central nervous system. Future research should further establish the mechanisms by which somatosensory impairments are linked to the neural control and performance of walking tasks, as well as develop intervention approaches.


Subject(s)
Gait , Spectroscopy, Near-Infrared , Aged , Aged, 80 and over , Executive Function/physiology , Female , Gait/physiology , Humans , Prefrontal Cortex/physiology , Spectroscopy, Near-Infrared/methods , Walking/physiology
4.
Clin Rehabil ; 35(8): 1196-1206, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33722075

ABSTRACT

OBJECTIVE: To assess changes in walking function and walking-related prefrontal cortical activity following two post-stroke rehabilitation interventions: an accurate adaptability (ACC) walking intervention and a steady state (SS) walking intervention. DESIGN: Randomized, single blind, parallel group clinical trial. SETTING: Hospital research setting. SUBJECTS: Adults with chronic post-stroke hemiparesis and walking deficits. INTERVENTIONS: ACC emphasized stepping accuracy and walking adaptability, while SS emphasized steady state, symmetrical stepping. Both included 36 sessions led by a licensed physical therapist. ACC walking tasks recruit cortical regions that increase corticospinal tract activation, while SS walking activates the corticospinal tract less intensely. MAIN MEASURES: The primary functional outcome measure was preferred steady state walking speed. Prefrontal brain activity during walking was measured with functional near infrared spectroscopy to assess executive control demands. Assessments were conducted at baseline, post-intervention (three months), and follow-up (six months). RESULTS: Thirty-eight participants were randomized to the study interventions (mean age 59.6 ± 9.1 years; mean months post-stroke 18.0 ± 10.5). Preferred walking speed increased from baseline to post-intervention by 0.13 ± 0.11 m/s in the ACC group and by 0.14 ± 0.13 m/s in the SS group. The Time × Group interaction was not statistically significant (P = 0.86). Prefrontal fNIRS during walking decreased from baseline to post-intervention, with a marginally larger effect in the ACC group (P = 0.05). CONCLUSIONS: The ACC and SS interventions produced similar changes in walking function. fNIRS suggested a potential benefit of ACC training for reducing demand on prefrontal (executive) resources during walking.


Subject(s)
Exercise Therapy/methods , Stroke Rehabilitation , Stroke/complications , Walking/physiology , Adult , Aged , Executive Function , Humans , Male , Middle Aged , Paresis , Single-Blind Method
5.
Neuromodulation ; 24(5): 950-959, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32808403

ABSTRACT

OBJECTIVES: This pilot study assessed whether frontal lobe transcranial direct current stimulation (tDCS) combined with complex walking rehabilitation is feasible, safe, and shows preliminary efficacy for improving walking and executive function. MATERIALS AND METHODS: Participants were randomized to one of the following 18-session interventions: active tDCS and rehabilitation with complex walking tasks (Active/Complex); sham tDCS and rehabilitation with complex walking tasks (Sham/Complex); or sham tDCS and rehabilitation with typical walking (Sham/Typical). Active tDCS was delivered over F3 (cathode) and F4 (anode) scalp locations for 20 min at 2 mA intensity. Outcome measures included tests of walking function, executive function, and prefrontal activity measured by functional near infrared spectroscopy. RESULTS: Ninety percent of participants completed the intervention protocol successfully. tDCS side effects of tingling or burning sensations were low (average rating less than two out of 10). All groups demonstrated gains in walking performance based on within-group effect sizes (d ≥ 0.50) for one or more assessments. The Sham/Typical group showed the greatest gains for walking based on between-group effect sizes. For executive function, the Active/Complex group showed the greatest gains based on moderate to large between-group effect sizes (d = 0.52-1.11). Functional near-infrared spectroscopy (fNIRS) findings suggest improved prefrontal cortical activity during walking. CONCLUSIONS: Eighteen sessions of walking rehabilitation combined with tDCS is a feasible and safe intervention for older adults. Preliminary effects size data indicate a potential improvement in executive function by adding frontal tDCS to walking rehabilitation. This study justifies future larger clinical trials to better understand the benefits of combining tDCS with walking rehabilitation.


Subject(s)
Transcranial Direct Current Stimulation , Aged , Double-Blind Method , Executive Function , Humans , Pilot Projects , Prefrontal Cortex , Walking
6.
Innov Aging ; 4(4): igaa034, 2020.
Article in English | MEDLINE | ID: mdl-32995566

ABSTRACT

BACKGROUND AND OBJECTIVES: The influence of interindividual differences on brain activation during obstacle negotiation and the implications for walking performance are poorly understood in older adults. This study investigated the extent to which prefrontal recruitment during obstacle negotiation is explained by differences in age, executive function, and sex. These data were interpreted according to the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH) framework of brain aging. We also tested the association between prefrontal recruitment and walking performance. RESEARCH DESIGN AND METHODS: Prefrontal oxygenated hemoglobin concentration (O2Hb) was measured during typical walking (Typical) and obstacle negotiation (Obstacles) tasks in 50 adults aged 65 years and older using functional near-infrared spectroscopy. The primary outcome was the change in prefrontal recruitment (∆PFR), measured as Obstacles ∆O2Hb minus Typical ∆O2Hb. Multiple regression was used to test the relationship between ∆PFR and age, executive function measured by the Trail Making Test, and sex. Pearson's correlation coefficient was used to investigate the association between ∆PFR and the cost of Obstacles walking speed relative to Typical walking. RESULTS: Age, executive function, and their interaction significantly predicted greater ∆PFR (R 2 = 0.34, p = .01). Participants were subgrouped according to age and executive function to examine the interaction effects. Adults of lower age and with lower executive function exhibited greater ∆PFR during Obstacles compared to their peers with higher executive function (p = .03). Adults of advanced age exhibited a ceiling of prefrontal recruitment during obstacle negotiation, regardless of executive function level (p = .87). Greater ∆PFR was significantly associated with a smaller cost of Obstacles (r = 0.3, p = .03). DISCUSSION AND IMPLICATIONS: These findings are consistent with the CRUNCH framework: neural inefficiency where a greater amount of brain activation is needed for task performance at a similar level, compensatory overactivation to prevent a steeper decline in task performance, and capacity limitation with a recruitment ceiling effect.

7.
Front Hum Neurosci ; 13: 194, 2019.
Article in English | MEDLINE | ID: mdl-31316360

ABSTRACT

Background: Functional near-infrared spectroscopy (fNIRS) is a valuable neuroimaging approach for studying cortical contributions to walking function. Recruitment of prefrontal cortex during walking has been a particular area of focus in the literature. The present study investigated whether task-related change in prefrontal recruitment measured by fNIRS is affected by individual differences in people post-stroke. The primary hypotheses were that poor mobility function would contribute to prefrontal over-recruitment during typical walking, and that poor cognitive function would contribute to a ceiling in prefrontal recruitment during dual-task walking (i.e., walking with a cognitive task). Methods: Thirty-three adults with chronic post-stroke hemiparesis performed three tasks: typical walking at preferred speed (Walk), serial-7 subtraction (Serial7), and walking combined with serial-7 subtraction (Dual-Task). Prefrontal recruitment was measured with fNIRS and quantified as the change in oxygenated hemoglobin concentration (ΔO2Hb) between resting and active periods for each task. Spatiotemporal gait parameters were measured on an electronic walkway. Stepwise regression was used to assess how prefrontal recruitment was affected by individual differences including age, sex, stroke region, injured hemisphere, stroke chronicity, 10-meter walking speed, balance confidence measured by Activities-specific Balance Confidence (ABC) Scale, sensorimotor impairment measured by Fugl-Meyer Assessment, and cognitive function measured by Mini-Mental State Examination (MMSE). Results: For Walk, poor balance confidence (ABC Scale score) significantly predicted greater prefrontal recruitment (ΔO2Hb; R 2 = 0.25, p = 0.003). For Dual-Task, poor cognitive function (MMSE score) significantly predicted lower prefrontal recruitment (ΔO2Hb; R 2 = 0.25, p = 0.002). Conclusions: Poor mobility function predicted higher prefrontal recruitment during typical walking, consistent with compensatory over-recruitment. Poor cognitive function predicted lower prefrontal recruitment during dual-task walking, consistent with a recruitment ceiling effect. These findings indicate that interpretation of prefrontal recruitment should carefully consider the characteristics of the person and demands of the task.

8.
Front Hum Neurosci ; 13: 161, 2019.
Article in English | MEDLINE | ID: mdl-31139069

ABSTRACT

Perceived challenge of walking is a broad term that we use to encompass walking-related anxiety, balance self-efficacy/confidence, and fear of falling. Evidence shows that even after accounting for physical performance capabilities, a higher perceived challenge can cause individuals to self-impose restrictions in walking-related activities. Perceived challenge is typically measured by self-report, which is susceptible to subjective measurement bias and error. We assert that measurement of perceived challenge can be enhanced by augmenting self-report with objective, physiologically based measures. A promising approach that has emerged in the literature is measurement of sympathetic nervous system (SNS) activity by recording skin conductance. Heightened SNS activity is a physiological stress response to conditions that are cognitively, emotionally, or physically challenging. In the present article, we explain the rationale and physiological basis for measuring SNS activity to assess perceived challenge of walking. We also present existing and new evidence supporting the feasibility of this approach for assessing perceived challenge in lab-based and real-world walking environments. Future research directions are also discussed.

9.
J Neurol Phys Ther ; 42(4): 224-232, 2018 10.
Article in English | MEDLINE | ID: mdl-30138228

ABSTRACT

BACKGROUND AND PURPOSE: Poststroke hemiparesis increases the perceived challenge of walking. Perceived challenge is commonly measured by self-report, which is susceptible to measurement bias. A promising approach to objectively assess perceived challenge is measuring sympathetic nervous system (SNS) activity with skin conductance to detect the physiological stress response. We investigated the feasibility of using skin conductance measurements to detect task-related differences in the challenge posed by complex walking tasks in adults poststroke. METHODS: Adults poststroke (n = 31) and healthy young adults (n = 8) performed walking tasks including typical walking, walking in dim lighting, walking over obstacles, and dual-task walking. Measures of skin conductance and spatiotemporal gait parameters were recorded. Continuous decomposition analysis was conducted to assess changes in skin conductance level (ΔSCL) and skin conductance response (ΔSCR). A subset of participants poststroke also underwent a 12-week rehabilitation intervention. RESULTS: SNS activity measured by skin conductance (both ΔSCL and ΔSCR) was significantly greater for the obstacles task and dual-task walking than for typical walking in the stroke group. Participants also exhibited "cautious" gait behaviors of slower speed, shorter step length, and wider step width during the challenging tasks. Following the rehabilitation intervention, SNS activity decreased significantly for the obstacles task and dual-task walking. DISCUSSION AND CONCLUSIONS: SNS activity measured by skin conductance is a feasible approach for quantifying task-related differences in the perceived challenge of walking tasks in people poststroke. Furthermore, reduced SNS activity during walking following a rehabilitation intervention suggests a beneficial reduction in the physiological stress response evoked by complex walking tasks.Video Abstract available for more insights from the authors (See Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A234).


Subject(s)
Galvanic Skin Response/physiology , Psychomotor Performance/physiology , Recovery of Function/physiology , Stroke/physiopathology , Sympathetic Nervous System/physiopathology , Walking/physiology , Adult , Aged , Female , Gait/physiology , Humans , Male , Middle Aged , Stroke/therapy , Stroke Rehabilitation , Young Adult
10.
Hum Mov Sci ; 59: 46-55, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29604488

ABSTRACT

BACKGROUND: Control of walking by the central nervous system includes contributions from executive control mechanisms, such as attention and motor planning resources. Executive control of walking can be estimated objectively by recording prefrontal cortical activity using functional near infrared spectroscopy (fNIRS). OBJECTIVE: The primary objective of this study was to investigate group differences in prefrontal/executive control of walking among young adults, older adults, and adults post-stroke. Also assessed was the extent to which walking-related prefrontal activity fits existing cognitive frameworks of prefrontal over-activation. METHODS: Participants included 24 adults post-stroke with moderate to severe walking deficits, 15 older adults with mild gait deficits, and 9 young healthy adults. Executive control of walking was quantified as oxygenated hemoglobin concentration in the prefrontal cortex measured by fNIRS. Three walking tasks were assessed: typical walking, walking over obstacles, and walking while performing a verbal fluency task. Walking performance was assessed by walking speed. RESULTS: There was a significant effect of group for prefrontal activity (p < 0.001) during typical and obstacles walking tasks, with young adults exhibiting the lowest level of prefrontal activity, followed by older adults, and then adults post-stroke. In young adults the prefrontal activity during typical walking was much lower than for the verbal fluency dual-task, suggesting substantial remaining prefrontal resources during typical walking. However, in older and post-stroke adults these remaining resources were significantly less (p < 0.01). Cumulatively, these results are consistent with prefrontal over-activation in the older and stroke groups, which was accompanied by a steeper drop in walking speed as task complexity increased to include obstacles (p < 0.05). CONCLUSIONS: There is a heightened use of prefrontal/executive control resources in older adults and post-stroke adults during walking. The level of prefrontal resource utilization, particularly during complex walking tasks like obstacle crossing, may approach the ceiling of available resources for people who have walking deficits. Prior cognitive research has revealed that prefrontal over-activation combined with limited prefrontal resources can lead to poor cognitive performance. The present study suggests a similar situation influences walking performance. Future research should further investigate the extent to which prefrontal over-activation during walking is linked to adverse mobility outcomes.


Subject(s)
Movement Disorders/physiopathology , Prefrontal Cortex/physiology , Walking/physiology , Adult , Aged , Aged, 80 and over , Analysis of Variance , Attention/physiology , Executive Function/physiology , Female , Gait/physiology , Humans , Male , Middle Aged , Oxyhemoglobins/metabolism , Prefrontal Cortex/chemistry , Spectroscopy, Near-Infrared , Stroke/physiopathology , Walking Speed/physiology , Young Adult
11.
Gait Posture ; 60: 148-153, 2018 02.
Article in English | MEDLINE | ID: mdl-29216598

ABSTRACT

BACKGROUND: Walking adaptability tasks are challenging for people with motor impairments. The construct of perceived challenge is typically measured by self-report assessments, which are susceptible to subjective measurement error. The development of an objective physiologically-based measure of challenge may help to improve the ability to assess this important aspect of mobility function. The objective of this study to investigate the use of sympathetic nervous system (SNS) activity measured by skin conductance to gauge the physiological stress response to challenging walking adaptability tasks in people post-stroke. METHODS: Thirty adults with chronic post-stroke hemiparesis performed a battery of seventeen walking adaptability tasks. SNS activity was measured by skin conductance from the palmar surface of each hand. The primary outcome variable was the percent change in skin conductance level (ΔSCL) between the baseline resting and walking phases of each task. Task difficulty was measured by performance speed and by physical therapist scoring of performance. Walking function and balance confidence were measured by preferred walking speed and the Activities-specific Balance Confidence Scale, respectively. RESULTS: There was a statistically significant negative association between ΔSCL and task performance speed and between ΔSCL and clinical score, indicating that tasks with greater SNS activity had slower performance speed and poorer clinical scores. ΔSCL was significantly greater for low functioning participants versus high functioning participants, particularly during the most challenging walking adaptability tasks. CONCLUSION: This study supports the use of SNS activity measured by skin conductance as a valuable approach for objectively quantifying the perceived challenge of walking adaptability tasks in people post-stroke.


Subject(s)
Galvanic Skin Response/physiology , Paresis/physiopathology , Stress, Physiological/physiology , Stroke/physiopathology , Sympathetic Nervous System/physiology , Walking/physiology , Adaptation, Physiological/physiology , Adult , Aged , Female , Humans , Male , Middle Aged , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...